Tutorial

Como Criar um Cluster Kubernetes 1.10 Usando Kubeadm no CentOS 7

Published on September 11, 2018
Português
Como Criar um Cluster Kubernetes 1.10 Usando Kubeadm no CentOS 7

O autor escolheu o Free and Open Source Fund para receber uma doação como parte do programa Write for DOnations.

Introdução

O Kubernetes é um sistema de orquestração de container em escala. Inicialmente desenvolvido pelo Google baseado em suas experiências executando containers em produção. O Kubernetes é open source e desenvolvido ativamente por uma comunidade em todo o mundo.

O Kubeadm atomatiza a instalação e a configuração de componentes do Kubernetes tais como o servidor de API, o Controller Manager, e o Kube DNS. Contudo, ele não cria usuários ou lida com a instalação de dependências no nível do sistema operacional e sua configuração. Para essa tarefas preliminares, é possível utilizar uma ferramenta de gerência de configuração como o Ansible ou o SaltStack. A utilização dessas ferramentas torna a criação de clusters adicionais ou a recriação de clusters existentes muito mais simples e menos propensa a erros.

Neste guia, você vai configurar um cluster Kubernetes a partir do zero utilizando o Ansible e o Kubeadm, e a seguir fazer o deploy de uma aplicação Nginx containerizada nele.

Objetivos

Seu cluster irá incluir os seguintes recursos físicos:

  • Um node master

O node master (um node no Kubernetes refere-se a um servidor) é responsável por gerenciar o estado do cluster. Ele roda o Etcd, que armazena dados de cluster entre componentes que fazem o scheduling de cargas de trabalho para nodes de trabalho.

  • Dois nodes worker

Nodes worker são os servidores onde suas cargas de trabalho (i.e. aplicações e serviços containerizados) irão executar. Um worker continuará a executar sua carga de trabalho uma vez que estejam atribuídos a ela, mesmo se o master for desativado quando o scheduling estiver concluído. A capacidade de um cluster pode ser aumentada adicionando workers.

Após a conclusão desse guia, você terá um cluster pronto para executar aplicações containerizadas, desde que os servidores no cluster tenham recursos suficientes de CPU e RAM para suas aplicações consumirem. Quase todas as aplicações Unix tradicionais, incluindo aplicações web, bancos de dados, daemons, e ferramentas de linha de comando podem ser containerizadas e feitas para rodar no cluster. O cluster em si consumirá cerca de 300-500MB de memória e 10% de CPU em cada node.

Uma vez que o cluster esteja configurado, você fará o deploy do servidor web Nginx nele para assegurar que ele está executando as cargas de trabalho corretamente.

Pré-requisitos

Passo 1 — Configurando o Diretório da Área de Trabalho e o Arquivo de Inventário Ansible

Nessa seção, você vai criar um diretório em sua máquina local que irá servir como sua área de trabalho. Você configurará o Ansible localmente para que ele possa se comunicar e executar comandos em seus servidores remotos. Depois disso pronto, você irá criar um arquivo hosts contendo informações de inventário tais como os endereços IP de seus servidores e os grupos aos quais cada servidor pertence.

Dos seus três servidores, um será o master com um IP exibido como master_ip. Os outros dois servidores serão workers e terão os IPs worker_1_ip e worker_2_ip.

Crie um diretório chamado ~/kube-cluster no diretório home de sua máquina local e faça um cd para dentro dele:

  1. mkdir ~/kube-cluster
  2. cd ~/kube-cluster

Esse diretório será sua área de trabalho para o restante desse tutorial e conterá todos os seus playbooks de Ansible. Ele também será o diretório no qual você irá executar todos os comandos locais.

Crie um arquivo chamado ~/kube-cluster/hosts usando o vi ou o seu editor de textos favorito:

  1. vi ~/kube-cluster/hosts

Pressione i para inserir o seguinte texto ao arquivo, que irá especificar informações sobre a estrutura lógica do cluster:

~/kube-cluster/hosts

[masters]
master ansible_host=master_ip ansible_user=root

[workers]
worker1 ansible_host=worker_1_ip ansible_user=root
worker2 ansible_host=worker_2_ip ansible_user=root

Quando tiver terminado, pressione ESC seguido de :wq para gravar as alterações no arquvo e sair.

Você deve se lembrar de que arquivos de inventário no Ansible são utilizados para especificar informações de servidor tais como endereços IP, usuários remotos, e agrupamentos de servidores para tratar como uma unidade única para a execução de comandos. O ~/kube-cluster/hosts será o seu arquivo de inventário e você adicionou dois grupos Ansible a ele (masters e workers) especificando a estrutura lógica do seu cluster.

No grupo masters, existe uma entrada de servidor chamada “master” que lista o IP do node master (master_ip) e especifica que o Ansible deve executar comandos remotos como root.

De maneira similar, no grupo workers, existem duas entradas para os servidores workers (worker_1_ip e worker_2_ip) que também especificam o ansible_user como root.

Tendo configurado o inventário do servidor com grupos, vamos passar a instalar dependências no nível do sistema operacional e a criar definições de configuração.

Passo 2 — Criando um Usuário Não-Root em Todos os Servidores Remotos

Nesta seção você irá criar um usuário não-root com privilégios sudo em todos os servidores para que você possa fazer SSH manualmente neles como um usuário sem privilégios. Isso pode ser útil se, por exemplo, você gostaria de ver informações do sistema com comandos como top/htop, ver a lista de containers em execução, ou alterar arquivos de configuração de propriedade do root. Estas operações são rotineiramente executadas durante a manutenção de um cluster, e a utilização de um usuário que não seja root para tarefas desse tipo minimiza o risco de modificação ou exclusão de arquivos importantes ou a realização não intencional de operações perigosas.

Crie um arquivo chamado ~/kube-cluster/initial.yml na área de trabalho:

  1. vi ~/kube-cluster/initial.yml

A seguir, adicione o seguinte play ao arquivo para criar um usuário não-root com privilégios sudo em todos os servidores. Um play no Ansible é uma coleção de passos a serem realizados que visam servidores e grupos específicos. O seguinte play irá criar um usuário sudo não-root:

~/kube-cluster/initial.yml

- hosts: all
  become: yes
  tasks:
    - name: create the 'centos' user
      user: name=centos append=yes state=present createhome=yes shell=/bin/bash

    - name: allow 'centos' to have passwordless sudo
      lineinfile:
        dest: /etc/sudoers
        line: 'centos ALL=(ALL) NOPASSWD: ALL'
        validate: 'visudo -cf %s'

    - name: set up authorized keys for the centos user
      authorized_key: user=centos key="{{item}}"
      with_file:
        - ~/.ssh/id_rsa.pub

Aqui está um detalhamento do que este playbook faz:

  • Cria um usuário não-root centos.

  • Configura o arquivo sudoers para permitir o usuário centos executar comandos sudo sem uma solicitação de senha.

  • Adiciona a chave pública em sua máquina local (normalmente ~/.ssh/id_rsa.pub) para a lista de chaves autorizadas do usuário remoto centos. Isto o permitirá fazer SSH para dentro de cada servidor como usuário centos.

Salve e feche o arquivo depois que tiver adicionado o texto.

Em seguida, rode o playbook localmente executando:

  1. ansible-playbook -i hosts ~/kube-cluster/initial.yml

O comando será concluído dentro de dois a cinco minutos. Na conclusão, você verá uma saída semelhante à seguinte:

Output
PLAY [all] **** TASK [Gathering Facts] **** ok: [master] ok: [worker1] ok: [worker2] TASK [create the 'centos' user] **** changed: [master] changed: [worker1] changed: [worker2] TASK [allow 'centos' user to have passwordless sudo] **** changed: [master] changed: [worker1] changed: [worker2] TASK [set up authorized keys for the centos user] **** changed: [worker1] => (item=ssh-rsa AAAAB3...) changed: [worker2] => (item=ssh-rsa AAAAB3...) changed: [master] => (item=ssh-rsa AAAAB3...) PLAY RECAP **** master : ok=5 changed=4 unreachable=0 failed=0 worker1 : ok=5 changed=4 unreachable=0 failed=0 worker2 : ok=5 changed=4 unreachable=0 failed=0

Agora que a configuração preliminar está completa, você pode passar para a instalação de dependências específicas do Kubernetes.

Passo 3 — Instalando as Dependências do Kubernetes

Nesta seção, você irá instalar os pacotes no nível do sistema operacional necessários pelo Kubernetes com o gerenciador de pacotes yum do CentOS. Esses pacotes são:

  • Docker - um runtime de container. Este é o componente que executa seus containers. Suporte a outros runtimes como o rkt está em desenvolvimento ativo no Kubernetes.

  • kubeadm - uma ferramenta CLI que irá instalar e configurar os vários componentes de um cluster de uma maneira padrão.

  • kubelet - um serviço/programa de sistema que roda em todos os nodes e lida com operações no nível do node.

  • kubectl - uma ferramenta CLI usada para emitir comandos para o cluster através de seu servidor de API.

Crie um arquivo chamado ~/kube-cluster/kube-dependencies.yml na área de trabalho:

  1. vi ~/kube-cluster/kube-dependencies.yml

Adicione os seguintes plays ao arquivo para instalar esses pacotes em seus servidores:

~/kube-cluster/kube-dependencies.yml

- hosts: all
  become: yes
  tasks:
   - name: install Docker
     yum:
       name: docker
       state: present
       update_cache: true

   - name: start Docker
     service:
       name: docker
       state: started

   - name: disable SELinux
     command: setenforce 0

   - name: disable SELinux on reboot
     selinux:
       state: disabled

   - name: ensure net.bridge.bridge-nf-call-ip6tables is set to 1
     sysctl:
      name: net.bridge.bridge-nf-call-ip6tables
      value: 1
      state: present

   - name: ensure net.bridge.bridge-nf-call-iptables is set to 1
     sysctl:
      name: net.bridge.bridge-nf-call-iptables
      value: 1
      state: present

   - name: add Kubernetes' YUM repository
     yum_repository:
      name: Kubernetes
      description: Kubernetes YUM repository
      baseurl: https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
      gpgkey: https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
      gpgcheck: yes

   - name: install kubelet
     yum:
        name: kubelet
        state: present
        update_cache: true

   - name: install kubeadm
     yum:
        name: kubeadm
        state: present

   - name: start kubelet
     service:
       name: kubelet
       enabled: yes
       state: started

- hosts: master
  become: yes
  tasks:
   - name: install kubectl
     yum:
        name: kubectl
        state: present

O primeiro play no playbook faz o seguinte:

  • Instala o Docker, o runtime de container.

  • Inicia o serviço do Docker.

  • Desativa o SELinux, uma vez que ele ainda não é totalmente suportado pelo Kubernetes.

  • Define alguns valores sysctl relacionados ao netfilter, necessários para o trabalho em rede. Isso permitirá que o Kubernetes defina regras de iptables para receber tráfego de rede IPv4 e IPv6 em bridge nos nodes.

  • Adiciona o repositório YUM do Kubernetes às listas de repositórios de seus servidores remotos.

  • Instala kubelet e kubeadm.

O segundo play consiste de uma única tarefa que instala o kubectl no seu node master.

Salve e feche o arquivo quando você tiver terminado.

A seguir, execute o playbook:

  1. ansible-playbook -i hosts ~/kube-cluster/kube-dependencies.yml

Na conclusão, você verá uma saída semelhante à seguinte:

Output
PLAY [all] **** TASK [Gathering Facts] **** ok: [worker1] ok: [worker2] ok: [master] TASK [install Docker] **** changed: [master] changed: [worker1] changed: [worker2] TASK [disable SELinux] **** changed: [master] changed: [worker1] changed: [worker2] TASK [disable SELinux on reboot] **** changed: [master] changed: [worker1] changed: [worker2] TASK [ensure net.bridge.bridge-nf-call-ip6tables is set to 1] **** changed: [master] changed: [worker1] changed: [worker2] TASK [ensure net.bridge.bridge-nf-call-iptables is set to 1] **** changed: [master] changed: [worker1] changed: [worker2] TASK [start Docker] **** changed: [master] changed: [worker1] changed: [worker2] TASK [add Kubernetes' YUM repository] ***** changed: [master] changed: [worker1] changed: [worker2] TASK [install kubelet] ***** changed: [master] changed: [worker1] changed: [worker2] TASK [install kubeadm] ***** changed: [master] changed: [worker1] changed: [worker2] TASK [start kubelet] **** changed: [master] changed: [worker1] changed: [worker2] PLAY [master] ***** TASK [Gathering Facts] ***** ok: [master] TASK [install kubectl] ****** ok: [master] PLAY RECAP **** master : ok=9 changed=5 unreachable=0 failed=0 worker1 : ok=7 changed=5 unreachable=0 failed=0 worker2 : ok=7 changed=5 unreachable=0 failed=0

Após a execução, o Docker, o kubeadm e o kubelet estarão instalados em todos os seus servidores remotos. O kubectl não é um componente obrigatório e somente é necessário para a execução de comandos de cluster. A instalação dele somente no node master faz sentido nesse contexto, uma vez que você irá executar comandos kubectl somente a partir do master. Contudo, observe que os comandos kubectl podem ser executados a partir de quaisquer nodes worker ou a partir de qualquer máquina onde ele possa ser instalado e configurado para apontar para um cluster.

Todas as dependências de sistema agora estão instaladas. Vamos configurar o node master e inicializar o cluster.

Passo 4 — Configurando o Node Master

Nesta seção, você irá configurar o node master. Antes da criação de quaisquer playbooks, contudo, vale a pena cobrir alguns conceitos como Pods e Plugins de Rede do Pod, uma vez que seu cluster incluirá ambos.

Um pod é uma unidade atômica que executa um ou mais containers. Esses containers compartilham recursos tais como volumes de arquivo e interfaces de rede em comum. Os pods são a unidade básica de scheduling no Kubernetes: todos os containers em um pod têm a garantia de serem executados no mesmo node no qual foi feito o scheduling do pod.

Cada pod tem seu próprio endereço IP, e um pod em um node deve ser capaz de acessar um pod em outro node utilizando o IP do pod. Os containers em um único node podem se comunicar facilmente através de uma interface local. Contudo, a comunicação entre pods é mais complicada e requer um componente de rede separado que possa encaminhar o tráfego de maneira transparente de um pod em um node para um pod em outro node.

Essa funcionalidade é fornecida pelos plugins de rede para pods. Para este cluster vamos utilizar o Flannel, uma opção estável e de bom desempenho.

Crie um playbook Ansible chamado master.yml em sua máquina local:

  1. vi ~/kube-cluster/master.yml

Adicione o seguinte play ao arquivo para inicializar o cluster e instalar o Flannel:

~/kube-cluster/master.yml

- hosts: master
  become: yes
  tasks:
    - name: initialize the cluster
      shell: kubeadm init --pod-network-cidr=10.244.0.0/16 >> cluster_initialized.txt
      args:
        chdir: $HOME
        creates: cluster_initialized.txt

    - name: create .kube directory
      become: yes
      become_user: centos
      file:
        path: $HOME/.kube
        state: directory
        mode: 0755

    - name: copy admin.conf to user's kube config
      copy:
        src: /etc/kubernetes/admin.conf
        dest: /home/centos/.kube/config
        remote_src: yes
        owner: centos

    - name: install Pod network
      become: yes
      become_user: centos
      shell: kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/v0.9.1/Documentation/kube-flannel.yml >> pod_network_setup.txt
      args:
        chdir: $HOME
        creates: pod_network_setup.txt

Aqui está um detalhamento deste play:

  • A primeira tarefa inicializa o cluster executando kubeadm init. A passagem do argumento --pod-network-cidr=10.244.0.0/16 especifica a sub-rede privada que os IPs do pod serão atribuídos. O Flannel utiliza a sub-rede acima por padrão; estamos dizendo ao kubeadm para utilizar a mesma sub-rede.

  • A segunda tarefa cria um diretório .kube em /home/centos. Este diretório irá manter as informações de configuração tais como os arquivos de chaves do admin, que são requeridas para conectar no cluster, e o endereço da API do cluster.

  • A terceira tarefa copia o arquivo /etc/kubernetes/admin.conf que foi gerado a partir do kubeadm init para o diretório home do seu usuário não-root centos. Isso irá permitir que você utilize o kubectl para acessar o cluster recém-criado.

  • A última tarefa executa kubectl apply para instalar o Flannel. kubectl apply -f descriptor.[yml|json] é a sintaxe para dizer ao kubectl para criar os objetos descritos no arquivo descriptor.[yml|json]. O arquivo kube-flannel.yml contém as descrições dos objetos requeridos para a configuração do Flannel no cluster.

Salve e feche o arquivo quando você tiver terminado.

Execute o playbook:

  1. ansible-playbook -i hosts ~/kube-cluster/master.yml

Na conclusão, você verá uma saída semelhante à seguinte:

Output
PLAY [master] **** TASK [Gathering Facts] **** ok: [master] TASK [initialize the cluster] **** changed: [master] TASK [create .kube directory] **** changed: [master] TASK [copy admin.conf to user's kube config] ***** changed: [master] TASK [install Pod network] ***** changed: [master] PLAY RECAP **** master : ok=5 changed=4 unreachable=0 failed=0

Para verificar o status do node master, faça SSH nele com o seguinte comando:

  1. ssh centos@master_ip

Uma vez dentro do node master, execute:

  1. kubectl get nodes

Agora você verá a seguinte saída:

Output
NAME STATUS ROLES AGE VERSION master Ready master 1d v1.10.1

A saída informa que o node master concluiu todas as tarefas de inicialização e está em um estado Ready do qual pode começar a aceitar nodes worker e executar tarefas enviadas ao Servidor de API. Agora você pode adicionar os workers a partir de sua máquina local.

Passo 5 — Configurando os Nodes Worker

A adição de workers ao cluster envolve a execução de um único comando em cada um. Este comando inclui as informações necessárias sobre o cluster, tais como o endereço IP e a porta do Servidor de API do master, e um token seguro. Somentes os nodes que passam no token seguro estarão aptos a ingressar no cluster.

Navegue de volta para a sua área de trabalho e crie um playbook chamado workers.yml:

  1. vi ~/kube-cluster/workers.yml

Adicione o seguinte texto ao arquivo para adicionar os workers ao cluster:

~/kube-cluster/workers.yml

- hosts: master
  become: yes
  gather_facts: false
  tasks:
    - name: get join command
      shell: kubeadm token create --print-join-command
      register: join_command_raw

    - name: set join command
      set_fact:
        join_command: "{{ join_command_raw.stdout_lines[0] }}"


- hosts: workers
  become: yes
  tasks:
    - name: join cluster
      shell: "{{ hostvars['master'].join_command }} >> node_joined.txt"
      args:
        chdir: $HOME
        creates: node_joined.txt

Aqui está o que o playbook faz:

  • O primeiro play obtém o comando de junção que precisa ser executado nos nodes workers. Este comando estará no seguinte formato: kubeadm join --token <token> <master-ip>:<master-port> --discovery-token-ca-cert-hash sha256:<hash>. Assim que obtiver o comando real com os valores apropriados de token e hash, a tarefa define isso como um fact para que o próximo play possa acessar essa informação.

  • O segundo play tem uma única tarefa que executa o comando de junção em todos os nodes worker. Na conclusão desta tarefa, os dois nodes worker farão parte do cluster.

Salve e feche o arquivo quando você tiver terminado.

Execute o playbook:

  1. ansible-playbook -i hosts ~/kube-cluster/workers.yml

Na conclusão, você verá uma saída semelhante à seguinte:

Output
PLAY [master] **** TASK [get join command] **** changed: [master] TASK [set join command] ***** ok: [master] PLAY [workers] ***** TASK [Gathering Facts] ***** ok: [worker1] ok: [worker2] TASK [join cluster] ***** changed: [worker1] changed: [worker2] PLAY RECAP ***** master : ok=2 changed=1 unreachable=0 failed=0 worker1 : ok=2 changed=1 unreachable=0 failed=0 worker2 : ok=2 changed=1 unreachable=0 failed=0

Com a adição dos nodes worker, seu cluster está agora totalmente configurado e funcional, com os workers prontos para executar cargas de trabalho. Antes de fazer o scheduling de aplicações, vamos verificar se o cluster está funcionando conforme o esperado.

Step 6 — Verificando o Cluster

Às vezes, um cluster pode falhar durante a configuração porque um node está inativo ou a conectividade de rede entre o master e o worker não está funcionando corretamente. Vamos verificar o cluster e garantir que os nodes estejam operando corretamente.

Você precisará verificar o estado atual do cluster a partir do node master para garantir que os nodes estejam prontos. Se você se desconectou do node master, pode voltar e fazer SSH com o seguinte comando:

  1. ssh centos@master_ip

Em seguida, execute o seguinte comando para obter o status do cluster:

  1. kubectl get nodes

Você verá uma saída semelhante à seguinte:

Output
NAME STATUS ROLES AGE VERSION master Ready master 1d v1.10.1 worker1 Ready <none> 1d v1.10.1 worker2 Ready <none> 1d v1.10.1

Se todos os seus nodes têm o valor Ready para o STATUS, significa que eles são parte do cluster e estão prontos para executar cargas de trabalho.

Se, contudo, alguns dos nodes têm NotReady como o STATUS, isso pode significar que os nodes worker ainda não concluíram sua configuração. Aguarde cerca de cinco a dez minutos antes de voltar a executar kubectl get nodes e fazer a inspeção da nova saída. Se alguns nodes ainda têm NotReady como status, talvez seja necessário verificar e executar novamente os comandos nas etapas anteriores.

Agora que seu cluster foi verificado com sucesso, vamos fazer o scheduling de um exemplo de aplicativo Nginx no cluster.

Passo 7 — Executando Uma Aplicação no Cluster

Você pode fazer o deploy de qualquer aplicação containerizada no seu cluster. Para manter as coisas familiares, vamos fazer o deploy do Nginx utilizando Deployments e Services para ver como pode ser feito o deploy dessa aplicação no cluster. Você também pode usar os comandos abaixo para outros aplicativos em container, desde que você altere o nome da imagem do Docker e quaisquer flags relevantes (tais como ports e volumes).

Ainda no node master, execute o seguinte comando para criar um deployment chamado nginx:

  1. kubectl run nginx --image=nginx --port 80

Um deployment é um tipo de objeto do Kubernetes que garante que há sempre um número especificado de pods em execução com base em um modelo definido, mesmo se o pod falhar durante o tempo de vida do cluster. O deployment acima irá criar um pod com um container do registro do Docker Nginx Docker Image.

A seguir, execute o seguinte comando para criar um serviço chamado nginx que irá expor o app publicamente. Ele fará isso por meio de um NodePort, um esquema que tornará o pod acessível através de uma porta arbitrária aberta em cada node do cluster:

  1. kubectl expose deploy nginx --port 80 --target-port 80<^> --type NodePort

Services são outro tipo de objeto do Kubernetes que expõe serviços internos do cluster para os clientes, tanto internos quanto externos. Eles também são capazes de fazer balanceamento de solicitações para vários pods e são um componente integral no Kubernetes, interagindo frequentemente com outros componentes.

Execute o seguinte comando:

  1. kubectl get services

Isso produzirá uma saída semelhante à seguinte:

Output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 1d nginx NodePort 10.109.228.209 <none> 80:nginx_port/TCP 40m

A partir da terceira linha da saída acima, você pode obter a porta em que o Nginx está sendo executado. O Kubernetes atribuirá uma porta aleatória maior que 30000 automaticamente, enquanto garante que a porta já não esteja vinculada a outro serviço.

Para testar se tudo está funcionando, visite http://worker_1_ip:nginx_port ou http://worker_2_ip:nginx_port através de um navegador na sua máquina local. Você verá a familiar página de boas-vindas do Nginx.

Se você quiser remover o aplicativo Nginx, primeiro exclua o serviço nginx do node master:

  1. kubectl delete service nginx

Execute o seguinte para garantir que o serviço tenha sido excluído:

  1. kubectl get services

Você verá a seguinte saída:

Output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 1d

Para excluir o deployment:

kubectl delete deployment nginx

Execute o seguinte para confirmar que isso funcionou:

  1. kubectl get deployments
Output
No resources found.

Conclusão

Neste guia, você configurou com sucesso um cluster do Kubernetes no CentOS 7 usando Kubeadm e Ansible para automação.

Se você está se perguntando o que fazer com o cluster, agora que ele está configurado, um bom próximo passo seria sentir-se confortável para implantar suas próprias aplicações e serviços no cluster. Aqui está uma lista de links com mais informações que podem orientá-lo no processo:

  • Dockerizing applications - lista exemplos que detalham como containerizar aplicações usando o Docker.

  • Pod Overview - descreve em detalhes como os Pods funcionam e seu relacionamento com outros objetos do Kubernetes. Os pods são onipresentes no Kubernetes, então compreendê-los facilitará seu trabalho.

  • Deployments Overview - fornece uma visão geral dos deployments. É útil entender como os controladores, como os deployments, funcionam, pois eles são usados com frequência em aplicações stateless para escalonamento e na recuperação automatizada de aplicações não íntegras.

  • Services Overview - cobre os serviços ou services, outro objeto frequentemente usado em clusters do Kubernetes. Entender os tipos de serviços e as opções que eles têm é essencial para executar aplicações stateless e stateful.

Outros conceitos importantes que você pode analisar são Volumes, Ingresses e Secrets, os quais são úteis ao realizar o deploy de aplicações em produção.

O Kubernetes tem muitas funcionalidades e recursos a oferecer. A Documentação Oficial do Kubernetes é o melhor lugar para aprender sobre conceitos, encontrar guias específicos de tarefas e procurar referências de API para vários objetos.

Por bsder

Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.

Learn more about our products

About the authors
Default avatar
bsder

author




Still looking for an answer?

Ask a questionSearch for more help

Was this helpful?
 
1 Comments


This textbox defaults to using Markdown to format your answer.

You can type !ref in this text area to quickly search our full set of tutorials, documentation & marketplace offerings and insert the link!

Bom tutorial.

É um laboratorio muito util

Try DigitalOcean for free

Click below to sign up and get $200 of credit to try our products over 60 days!

Sign up

Join the Tech Talk
Success! Thank you! Please check your email for further details.

Please complete your information!

Featured on Community

Get our biweekly newsletter

Sign up for Infrastructure as a Newsletter.

Hollie's Hub for Good

Working on improving health and education, reducing inequality, and spurring economic growth? We'd like to help.

Become a contributor

Get paid to write technical tutorials and select a tech-focused charity to receive a matching donation.

Welcome to the developer cloud

DigitalOcean makes it simple to launch in the cloud and scale up as you grow — whether you're running one virtual machine or ten thousand.

Learn more
Animation showing a Droplet being created in the DigitalOcean Cloud console