// Tutorial //

numpy.ones() in Python

Published on August 3, 2022
Default avatar
By Pankaj
Developer and author at DigitalOcean.
numpy.ones() in Python

While we believe that this content benefits our community, we have not yet thoroughly reviewed it. If you have any suggestions for improvements, please let us know by clicking the “report an issue“ button at the bottom of the tutorial.

Python numpy.ones() function returns a new array of given shape and data type, where the element’s value is set to 1. This function is very similar to numpy zeros() function.

numpy.ones() function arguments

The numpy.ones() function syntax is:

ones(shape, dtype=None, order='C')
  • The shape is an int or tuple of ints to define the size of the array. If we just specify an int variable, a one-dimensional array will be returned. For a tuple of ints, the array of given shape will be returned.
  • The dtype is an optional parameter with default value as a float. It’s used to specify the data type of the array, for example, int.
  • The order defines the whether to store multi-dimensional array in row-major (C-style) or column-major (Fortran-style) order in memory.

Python numpy.ones() Examples

Let’s look at some examples of creating arrays using the numpy ones() function.

1. Creating one-dimensional array with ones

import numpy as np

array_1d = np.ones(3)
print(array_1d)

Output:

[1. 1. 1.]

Notice that the elements are having the default data type as the float. That’s why the ones are 1. in the array.

2. Creating Multi-dimensional array

import numpy as np

array_2d = np.ones((2, 3))
print(array_2d)

Output:

[[1. 1. 1.]
 [1. 1. 1.]]

3. NumPy ones array with int data type

import numpy as np

array_2d_int = np.ones((2, 3), dtype=int)
print(array_2d_int)

Output:

[[1 1 1]
 [1 1 1]]

4. NumPy Array with Tuple Data Type and Ones

We can specify the array elements as a tuple and specify their data types too.

import numpy as np

array_mix_type = np.ones((2, 2), dtype=[('x', 'int'), ('y', 'float')])
print(array_mix_type)
print(array_mix_type.dtype)

Output:

[[(1, 1.) (1, 1.)]
 [(1, 1.) (1, 1.)]]
[('x', '<i8'), ('y', '<f8')]
Numpy Ones Example
Python numpy.ones() Example

Reference: API Doc


Want to learn more? Join the DigitalOcean Community!

Join our DigitalOcean community of over a million developers for free! Get help and share knowledge in our Questions & Answers section, find tutorials and tools that will help you grow as a developer and scale your project or business, and subscribe to topics of interest.

Sign up
About the authors
Default avatar
Pankaj

author

Developer and author at DigitalOcean.

Still looking for an answer?

Was this helpful?