Django is a powerful web framework that can help you get your Python application or website off the ground quickly. Django includes a simplified development server for testing your code locally, but for anything even slightly production related, a more secure and powerful web server is required.
In this guide, we will demonstrate how to install and configure Django in a Python virtual environment. We’ll then set up Apache in front of our application so that it can handle client requests directly before passing requests that require application logic to the Django app. We will do this using the mod_wsgi
Apache module that can communicate with Django over the WSGI interface specification.
In order to complete this guide, you should have a fresh Ubuntu 14.04 server instance with a non-root user with sudo
privileges configured. You can learn how to set this up by running thorugh our initial server setup guide.
We will be installing Django within a Python virtual environment. Installing Django into an environment specific to your project will allow your projects and their requirements to be handled separately.
Once we have our application up and running, we will configure Apache to interface with the Django app. It will do this with the mod_wsgi
Apache module, which can translate HTTP requests into a predictable application format defined by a specification called WSGI. You can find out more about WSGI by reading the linked section on this guide.
Let’s get started.
To begin the process, we’ll download and install all of the items we need from the Ubuntu repositories. This will include the Apache web server, the mod_wsgi
module used to interface with our Django app, and pip
, the Python package manager that can be used to download our Python-related tools.
To get everything we need, update your server’s local package index and then install the appropriate packages.
If you are using Django with Python 2, the commands you need are:
sudo apt-get update
sudo apt-get install python-pip apache2 libapache2-mod-wsgi
If, instead, you are using Django with Python 3, you will need an alternative Apache module. The appropriate commands in this case are:
sudo apt-get update
sudo apt-get install python3-pip apache2 libapache2-mod-wsgi-py3
When operating outside of a virtual environment for the remainder of the tutorial, if you are using Python 3, replace pip
with pip3
.
Now that we have the components from the Ubuntu repositories, we can start working on our Django project. The first step is to create a Python virtual environment so that our Django project will be separate from the system’s tools and any other Python projects we may be working on.
We need to install the virtualenv
command to create these environments. We can get this using pip
:
sudo pip install virtualenv
With virtualenv
installed, we can start forming our project. Create a directory where you wish to keep your project and move into the directory:
mkdir ~/myproject
cd ~/myproject
Within the project directory, create a Python virtual environment by typing:
virtualenv myprojectenv
This will create a directory called myprojectenv
within your myproject
directory. Inside, it will install a local version of Python and a local version of pip
. We can use this to install and configure an isolated Python environment for our project.
Before we install our project’s Python requirements, we need to activate the virtual environment. You can do that by typing:
source myprojectenv/bin/activate
Your prompt should change to indicate that you are now operating within a Python virtual environment. It will look something like this: (myprojectenv)user@host:~/myproject$
.
With your virtual environment active, install Django with the local instance of pip
by typing:
pip install django
Now that Django is installed in our virtual environment, we can create the actual Django project files.
Since we already have a project directory, we will tell Django to install the files here. It will create a second level directory with the actual code, which is normal, and place a management script in this directory. The key to this is the dot at the end that tells Django to create the files in the current directory:
django-admin.py startproject myproject .
The first thing we should do with our newly created project files is adjust the settings. Open the settings file with your text editor:
nano myproject/settings.py
We are going to be using the default SQLite database in this guide for simplicity’s sake, so we don’t actually need to change too much. We will focus on configuring the static files directory, where Django will place static files so that the web server can serve these easily.
At the bottom of the file, we will add a line to configure this directory. Django uses the STATIC_ROOT
setting to determine the directory where these files should go. We’ll use a bit of Python to tell it to use a directory called “static” in our project’s main directory:
STATIC_ROOT = os.path.join(BASE_DIR, "static/")
Save and close the file when you are finished.
Now, we can migrate the initial database schema to our SQLite database using the management script:
cd ~/myproject
./manage.py makemigrations
./manage.py migrate
Create an administrative user for the project by typing:
./manage.py createsuperuser
You will have to select a username, provide an email address, and choose and confirm a password.
We can collect all of the static content into the directory location we configured by typing:
./manage.py collectstatic
You will have to confirm the operation. The static files will be placed in a directory called static
within your project directory.
Finally, you can test your project by starting up the Django development server with this command:
./manage.py runserver 0.0.0.0:8000
In your web browser, visit your server’s domain name or IP address followed by :8000
:
http://server_domain_or_IP:8000
You should see the default Django index page:
If you append /admin
to the end of the URL in the address bar, you will be prompted for the administrative username and password you created with the createsuperuser
command:
After authenticating, you can access the default Django admin interface:
When you are finished exploring, hit CTRL-C in the terminal window to shut down the development server.
We’re now done with Django for the time being, so we can back out of our virtual environment by typing:
deactivate
Now that your Django project is working, we can configure Apache as a front end. Client connections that it receives will be translated into the WSGI format that the Django application expects using the mod_wsgi
module. This should have been automatically enabled upon installation earlier.
To configure the WSGI pass, we’ll need to edit the default virtual host file:
sudo nano /etc/apache2/sites-available/000-default.conf
We can keep the directives that are already present in the file. We just need to add some additional items.
To start, let’s configure the static files. We will use an alias to tell Apache to map any requests starting with /static
to the “static” directory within our project folder. We collected the static assets there earlier. We will set up the alias and then grant access to the directory in question with a directory block:
<VirtualHost *:80>
. . .
Alias /static /home/user/myproject/static
<Directory /home/user/myproject/static>
Require all granted
</Directory>
</VirtualHost>
Next, we’ll grant access to the wsgi.py
file within the second level project directory where the Django code is stored. To do this, we’ll use a directory section with a file section inside. We will grant access to the file inside of this nested construct:
<VirtualHost *:80>
. . .
Alias /static /home/user/myproject/static
<Directory /home/user/myproject/static>
Require all granted
</Directory>
<Directory /home/user/myproject/myproject>
<Files wsgi.py>
Require all granted
</Files>
</Directory>
</VirtualHost>
After this is configured, we are ready to construct the portion of the file that actually handles the WSGI pass. We’ll use daemon mode to run the WSGI process, which is the recommended configuration. We can use the WSGIDaemonProcess
directive to set this up.
This directive takes an arbitrary name for the process. We’ll use myproject
to stay consistent. Afterwards, we set up the Python path to the project’s parent directory. This will be /home/user/myproject
in this guide. Since we used a virtual environment, we will also need to set the Python home to the root of our virtual environment. This way, Apache can find all of the other Python code needed to run our project.
Afterwards, we need to specify the process group. This should point to the same name we selected for the WSGIDaemonProcess
directive (myproject
in our case). Finally, we need to set the script alias so that Apache will pass requests for the root domain to the wsgi.py
file:
<VirtualHost *:80>
. . .
Alias /static /home/user/myproject/static
<Directory /home/user/myproject/static>
Require all granted
</Directory>
<Directory /home/user/myproject/myproject>
<Files wsgi.py>
Require all granted
</Files>
</Directory>
WSGIDaemonProcess myproject python-path=/home/user/myproject python-home=/home/user/myproject/myprojectenv
WSGIProcessGroup myproject
WSGIScriptAlias / /home/user/myproject/myproject/wsgi.py
</VirtualHost>
When you are finished making these changes, save and close the file.
If you are using the SQLite database, which is the default used in this article, you need to allow the Apache process access to this file.
To do so, the first step is to change the permissions so that the group owner of the database can read and write. The database file is called db.sqlite3
by default and it should be located in your base project directory:
chmod 664 ~/myproject/db.sqlite3
Afterwards, we need to give the group Apache runs under, the www-data
group, group ownership of the file:
sudo chown :www-data ~/myproject/db.sqlite3
In order to write to the file, we also need to give the Apache group ownership over the database’s parent directory:
sudo chown :www-data ~/myproject
Once these steps are done, you are ready to restart the Apache service to implement the changes you made. Restart Apache by typing:
sudo service apache2 restart
You should now be able to access your Django site by going to your server’s domain name or IP address without specifying a port. The regular site and the admin interface should function as expected.
In this guide, we’ve set up a Django project in its own virtual environment. We’ve configured Apache with mod_wsgi
to handle client requests and interface with the Django app.
Django makes creating projects and applications simple by providing many of the common pieces, allowing you to focus on the unique elements. By leveraging the general tool chain described in this article, you can easily serve the applications you create from a single server.
Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.
This textbox defaults to using Markdown to format your answer.
You can type !ref in this text area to quickly search our full set of tutorials, documentation & marketplace offerings and insert the link!
Sign up for Infrastructure as a Newsletter.
Working on improving health and education, reducing inequality, and spurring economic growth? We'd like to help.
Get paid to write technical tutorials and select a tech-focused charity to receive a matching donation.
you missed a step probably:
chown www-data. .
I apologize for being late to the party. I appreciate your tutorial–it’s precisely what I need. I’ve followed your tutorial to the point that I can test Django’s toy-server. However, after executing “./manage.py runserver 0.0.0.0:8000” I cannot access the webpage from my browser at “http://IP-ADDRESS:8000.” The browser complains that the connection times out. That said, “http://IP-ADDRESS” quickly loads the default Apache Ubuntu Index page. Any help would be much appreciated!
PS I am not using a virtual environment. The permissions on my server have twisted my arm into using sudo for many commands that you do not. When using sudo, I noticed I would have to use the absolute path for all executables and scripts–even after activating the venv, which was too much of a pain for this quick exercise. Thanks so much!
You should mention that if you’re using python 3 with django you have to install libapache2-mod-wsgi-py3. I’ve been having errors for the past two weeks because WSGI was using the wrong version of python.
Fantastic job Justin (just any other well written guide by Digital Ocean)!
Thank you very much for your precious time.
Best,
Laurentino
is this still relevant to Ubuntu 18.04
Great tutorial Thanks! however I am facing a problem I see in the logs " django.core.exceptions.ImproperlyConfigured: Could not write to directory: /home/ubuntu/my_django_project/tmp" even though I did chown on my project dir and the tmp dir
****Gracias, muy útil
Para el problema de permisos, no olvidar reemplazar user por el nombre de usuario de su sistema
Ejemplo
En mi caso el nombre de usuario es serv
Sustituir
WSGIScriptAlias / /home/user/myproject/myproject/wsgi.py
por
WSGIScriptAlias / /home/serv/myproject/myproject/wsgi.py
en todas las líneas que contengan el termino user
I had the “permission denied” problem and I resolved it giving execution permission to my user folder:
After that, my django app is working in apache.
Keep in mind doing this you give execution permission in your user folder to “others”, but it helps for development.
Source: https://stackoverflow.com/a/13613671
the project is deployed into the ubuntu server through by giving the github project link and it installed in the form of clone in ubuntu and how to deploy this django application on apache and how to run this django application on apache
how to deploy the django application on apache using the production server ubuntu. i want the clear view how to deploy the django application on apache