How to Install Hadoop in Stand-Alone Mode on Ubuntu 16.04

How to Install Hadoop in Stand-Alone Mode on Ubuntu 16.04
Not using Ubuntu 16.04?Choose a different version or distribution.
Ubuntu 16.04


Hadoop is a Java-based programming framework that supports the processing and storage of extremely large datasets on a cluster of inexpensive machines. It was the first major open source project in the big data playing field and is sponsored by the Apache Software Foundation.

Hadoop 2.7 is comprised of four main layers:

  • Hadoop Common is the collection of utilities and libraries that support other Hadoop modules.
  • HDFS, which stands for Hadoop Distributed File System, is responsible for persisting data to disk.
  • YARN, short for Yet Another Resource Negotiator, is the “operating system” for HDFS.
  • MapReduce is the original processing model for Hadoop clusters. It distributes work within the cluster or map, then organizes and reduces the results from the nodes into a response to a query. Many other processing models are available for the 2.x version of Hadoop.

Hadoop clusters are relatively complex to set up, so the project includes a stand-alone mode which is suitable for learning about Hadoop, performing simple operations, and debugging.

In this tutorial, we’ll install Hadoop in stand-alone mode and run one of the example example MapReduce programs it includes to verify the installation.


To follow this tutorial, you will need:

Once you’ve completed this prerequisite, you’re ready to install Hadoop and its dependencies.

Before you begin, you might also like to take a look at An Introduction to Big Data Concepts and Terminology or An Introduction to Hadoop

Step 1 — Installing Java

To get started, we’ll update our package list:

  1. sudo apt-get update

Next, we’ll install OpenJDK, the default Java Development Kit on Ubuntu 16.04.

  1. sudo apt-get install default-jdk

Once the installation is complete, let’s check the version.

  1. java -version
openjdk version "1.8.0_91" OpenJDK Runtime Environment (build 1.8.0_91-8u91-b14-3ubuntu1~16.04.1-b14) OpenJDK 64-Bit Server VM (build 25.91-b14, mixed mode)

This output verifies that OpenJDK has been successfully installed.

Step 2 — Installing Hadoop

With Java in place, we’ll visit the Apache Hadoop Releases page to find the most recent stable release. Follow the binary for the current release:

Screenshot of the Hadoop Releases page highlighting the link the mirrors page

On the next page, right-click and copy the link for the latest stable release binary.

Screenshot of the Hadoop releases page highlighting the link to the latest stable binary

On the server, we’ll use wget to fetch it:

  1. wget http://apache.mirrors.tds.net/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz

Note: The Apache website will direct you to the best mirror dynamically, so your URL may not match the URL above.

In order to make sure that the file we downloaded hasn’t been altered, we’ll do a quick check using SHA-256. Return the releases page, then follow the Apache link:

Screenshot highlighting the .mds file

Enter the directory for the version you downloaded: Screenshot highlighting the .mds file

Finally, locate the .mds file for the release you downloaded, then copy the link for the corresponding file:

Screenshot highlighting the .mds file

Again, we’ll right-click to copy the file location, then use wget to transfer the file:

  1. wget https://dist.apache.org/repos/dist/release/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz.mds

Then run the verification:

  1. shasum -a 256 hadoop-2.7.3.tar.gz
d489df3808244b906eb38f4d081ba49e50c4603db03efd5e594a1e98b09259c2 hadoop-2.7.3.tar.gz

Compare this value with the SHA-256 value in the .mds file:

  1. cat hadoop-2.7.3.tar.gz.mds
hadoop-2.7.3.tar.gz: SHA256 = D489DF38 08244B90 6EB38F4D 081BA49E 50C4603D B03EFD5E 594A1E98 B09259C2

You can safely ignore the difference in case and the spaces. The output of the command we ran against the file we downloaded from the mirror should match the value in the file we downloaded from apache.org.

Now that we’ve verified that the file wasn’t corrupted or changed, we’ll use the tar command with the -x flag to extract, -z to uncompress, -v for verbose output, and -f to specify that we’re extracting from a file. Use tab-completion or substitute the correct version number in the command below:

  1. tar -xzvf hadoop-2.7.3.tar.gz

Finally, we’ll move the extracted files into /usr/local, the appropriate place for locally installed software. Change the version number, if needed, to match the version you downloaded.

  1. sudo mv hadoop-2.7.3 /usr/local/hadoop

With the software in place, we’re ready to configure its environment.

Step 3 — Configuring Hadoop’s Java Home

Hadoop requires that you set the path to Java, either as an environment variable or in the Hadoop configuration file.

The path to Java, /usr/bin/java is a symlink to /etc/alternatives/java, which is in turn a symlink to default Java binary. We will use readlink with the -f flag to follow every symlink in every part of the path, recursively. Then, we’ll use sed to trim bin/java from the output to give us the correct value for JAVA_HOME.

To find the default Java path

  1. readlink -f /usr/bin/java | sed "s:bin/java::"

You can copy this output to set Hadoop’s Java home to this specific version, which ensures that if the default Java changes, this value will not. Alternatively, you can use the readlink command dynamically in the file so that Hadoop will automatically use whatever Java version is set as the system default.

To begin, open hadoop-env.sh:

  1. sudo nano /usr/local/hadoop/etc/hadoop/hadoop-env.sh

Then, choose one of the following options:

Option 1: Set a Static Value

 . . .
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/jre/
 . . . 
 . . .
export JAVA_HOME=$(readlink -f /usr/bin/java | sed "s:bin/java::")
 . . . 

Note: With respect to Hadoop, the value of JAVA_HOME in hadoop-env.sh overrides any values that are set in the environment by /etc/profile or in a user’s profile.

Step 4 — Running Hadoop

Now we should be able to run Hadoop:

  1. /usr/local/hadoop/bin/hadoop
Usage: hadoop [--config confdir] [COMMAND | CLASSNAME] CLASSNAME run the class named CLASSNAME or where COMMAND is one of: fs run a generic filesystem user client version print the version jar <jar> run a jar file note: please use "yarn jar" to launch YARN applications, not this command. checknative [-a|-h] check native hadoop and compression libraries availability distcp <srcurl> <desturl> copy file or directories recursively archive -archiveName NAME -p <parent path> <src>* <dest> create a hadoop archive classpath prints the class path needed to get the credential interact with credential providers Hadoop jar and the required libraries daemonlog get/set the log level for each daemon

The help means we’ve successfully configured Hadoop to run in stand-alone mode. We’ll ensure that it is functioning properly by running the example MapReduce program it ships with. To do so, create a directory called input in our home directory and copy Hadoop’s configuration files into it to use those files as our data.

  1. mkdir ~/input
  2. cp /usr/local/hadoop/etc/hadoop/*.xml ~/input

Next, we can use the following command to run the MapReduce hadoop-mapreduce-examples program, a Java archive with several options. We’ll invoke its grep program, one of many examples included in hadoop-mapreduce-examples, followed by the input directory, input and the output directory grep_example. The MapReduce grep program will count the matches of a literal word or regular expression. Finally, we’ll supply a regular expression to find occurrences of the word principal within or at the end of a declarative sentence. The expression is case-sensitive, so we wouldn’t find the word if it were capitalized at the beginning of a sentence:

  1. /usr/local/hadoop/bin/hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar grep ~/input ~/grep_example 'principal[.]*'

When the task completes, it provides a summary of what has been processed and errors it has encountered, but this doesn’t contain the actual results.

. . . File System Counters FILE: Number of bytes read=1247674 FILE: Number of bytes written=2324248 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 Map-Reduce Framework Map input records=2 Map output records=2 Map output bytes=37 Map output materialized bytes=47 Input split bytes=114 Combine input records=0 Combine output records=0 Reduce input groups=2 Reduce shuffle bytes=47 Reduce input records=2 Reduce output records=2 Spilled Records=4 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=61 Total committed heap usage (bytes)=263520256 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=151 File Output Format Counters Bytes Written=37

Note: If the output directory already exists, the program will fail, and rather than seeing the summary, the ouput will look something like:

. . . at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.hadoop.util.RunJar.run(RunJar.java:221) at org.apache.hadoop.util.RunJar.main(RunJar.java:136)

Results are stored in the output directory and can be checked by running cat on the output directory:

  1. cat ~/grep_example/*
6 principal 1 principal.

The MapReduce task found one occurrence of the word principal followed by a period and six occurrences where it was not. Running the example program has verified that our stand-alone installation is working properly and that non-privileged users on the system can run Hadoop for exploration or debugging.


In this tutorial, we’ve installed Hadoop in stand-alone mode and verified it by running an example program it provided. To learn how write your own MapReduce programs, you might want to visit Apache Hadoop’s MapReduce tutorial which walks through the code behind the example. When you’re ready to set up a cluster, see the Apache Foundation Hadoop Cluster Setup guide.

Thanks for learning with the DigitalOcean Community. Check out our offerings for compute, storage, networking, and managed databases.

Learn more about our products

About the authors

Still looking for an answer?

Ask a questionSearch for more help

Was this helpful?

This textbox defaults to using Markdown to format your answer.

You can type !ref in this text area to quickly search our full set of tutorials, documentation & marketplace offerings and insert the link!

Hi… Mellissa … Can you please update tutorial for multi-node hadoop installation on ubuntu-16.04. Thanks in advance…

thank you it really worked…

Hi Melissa,

Excellent job. Everything worked perfectly as you described.


Thanks Melissa…!!!

Awesome content and its too helpful for me. This guide structured properly and very fine manner.

Warmly Thanks again…fantastic.

Thanks Melissa, It’s very helpful and in very simple words.

After executing

/usr/local/hadoop/bin/hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar grep ~/input ~/grep_example 'principal[.]*'

I am getting this. I don’t know what’s wrong.

WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.hadoop.security.authentication.util.KerberosUtil (file:/usr/local/hadoop/share/hadoop/common/lib/hadoop-auth-2.10.0.jar) to method sun.security.krb5.Config.getInstance()
WARNING: Please consider reporting this to the maintainers of org.apache.hadoop.security.authentication.util.KerberosUtil
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
20/01/30 03:41:43 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
20/01/30 03:41:43 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
20/01/30 03:41:43 INFO mapreduce.JobSubmitter: Cleaning up the staging area file:/tmp/hadoop-pbhusari/mapred/staging/pbhusari2035710897/.staging/job_local2035710897_0001
org.apache.hadoop.mapreduce.lib.input.InvalidInputException: Input path does not exist: hdfs://localhost:9000/home/pbhusari/input
	at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:329)
	at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.listStatus(FileInputFormat.java:271)
	at org.apache.hadoop.mapreduce.lib.input.FileInputFormat.getSplits(FileInputFormat.java:393)
	at org.apache.hadoop.mapreduce.JobSubmitter.writeNewSplits(JobSubmitter.java:314)
	at org.apache.hadoop.mapreduce.JobSubmitter.writeSplits(JobSubmitter.java:331)
	at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:202)
	at org.apache.hadoop.mapreduce.Job$11.run(Job.java:1570)
	at org.apache.hadoop.mapreduce.Job$11.run(Job.java:1567)
	at java.base/java.security.AccessController.doPrivileged(Native Method)
	at java.base/javax.security.auth.Subject.doAs(Subject.java:423)
	at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1893)
	at org.apache.hadoop.mapreduce.Job.submit(Job.java:1567)
	at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1588)
	at org.apache.hadoop.examples.Grep.run(Grep.java:78)
	at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76)
	at org.apache.hadoop.examples.Grep.main(Grep.java:103)
	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.base/java.lang.reflect.Method.invoke(Method.java:566)
	at org.apache.hadoop.util.ProgramDriver$ProgramDescription.invoke(ProgramDriver.java:71)
	at org.apache.hadoop.util.ProgramDriver.run(ProgramDriver.java:144)
	at org.apache.hadoop.examples.ExampleDriver.main(ExampleDriver.java:74)
	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.base/java.lang.reflect.Method.invoke(Method.java:566)
	at org.apache.hadoop.util.RunJar.run(RunJar.java:244)
	at org.apache.hadoop.util.RunJar.main(RunJar.java:158)

Hi there, I am just going to set up my droplet. Any idea configurations I must choose. I am just looking to explore Hadoop. Should i go for and 8GB ram or a 4GB one. Also must it be a cpu optimized one or a normal one? Thanks in advance

Could you please help me resolve the following error for the below command?

/usr/local/hadoop/bin/hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar grep ~/input ~/grep_example ‘principal[.]*’

JAR does not exist or is not a normal file: /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar

fantastic…really helped

How to run python code using same installation process, I’m facing difficulty using streaming API ? Or I think Streaming thing is not even present in hadoop-env.sh ? How can I run the code?

Try DigitalOcean for free

Click below to sign up and get $200 of credit to try our products over 60 days!

Sign up

Join the Tech Talk
Success! Thank you! Please check your email for further details.

Please complete your information!

Featured on Community

Get our biweekly newsletter

Sign up for Infrastructure as a Newsletter.

Hollie's Hub for Good

Working on improving health and education, reducing inequality, and spurring economic growth? We'd like to help.

Become a contributor

Get paid to write technical tutorials and select a tech-focused charity to receive a matching donation.

Welcome to the developer cloud

DigitalOcean makes it simple to launch in the cloud and scale up as you grow — whether you're running one virtual machine or ten thousand.

Learn more
DigitalOcean Cloud Control Panel